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1 General Relativity Principles

First we review Newtonian Gravitation to remind ourselves of what General Relativity
must reduce to in the classical limit.

1.1 Newtonian Gravitation

We know very well Newton's three laws of motion and his law of Universal Gravitation.
The most famous formula for the �rst is

~F = mi~a Fj = miaj = mi

d2xj

dt2
~F = m0~a F � = m0a

� = m0

d2x�

dt2
(1)

where mi means inertial mass and m0 means inertial rest mass.
Newton's Universal law of Gravitation is often expressed as

FG = �
GMGmG

r2
or ~FG = �mGr� F

j
G =

@�

@xj

Where � = GMG=r for a point mass or � =
R R R

�G=r dxdydz for a distributed
density and the subscript G means the source charge of gravity. That is, mG is

the coupling for producing or being acted on (assuming action equals reaction) by
gravitational forces.

1.1.1 Weak Equivalence Prinicple

The weak equivalence principle holds that the gravitational mass and inertial mass
are exactly the same: mi = mG. This is well established by experiment to roughtly
the 10�14 level. We take it as correct here. Then we automatically get an equivalence
of acceleration and gravity at a point as far as kinematics are concerned.

Continuing with our discussion of Newtonian gravity assuming the validity of
the Weak Equivalence Principle we have for the equations of motion:

d2xi

dt2
= ��ij

@�

@xj
(3)
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This gives us a simple equation of motion based upon the �rst partial derivatives of
the gravitational potential.

1.2 Tidal Forces Equations

Now it is both intuitive and well known that conventional gravitational �elds, e.g.
those from the Earth, moon, Sun etc. produce tidal forces. E.g. every thing dropped
from rest (or near rest) near the Earth experience an acceleration directed toward
the center of the Earth. Over small distances the directions are nearly parallel so
everything in free fall (no other forces acting) appears to accelerate down at the same
rate and direction. When viewed more globally, it is clear that the accelerations vary
with the angle one is separated by around the circumference of the Earth.

We can write and equation for this for the general case by considering two
particles one at location xk and one at location xk + �xk. The potential will be

slightly di�erent but we can expand �

�(xk +�xk) = �(xk) +
@�

@xk
�xk + :::

around the original point with position vector component xk.
The equation of motion for the second particle is similar

d2xi +�xi

dt2
= ��ij

@�(xk +�xk)

@xj
= ��ij

 
@�

@xj
+

@2�

@xj@xk

!

Taking the di�erence between the original and displace by �xk test particles equations
of motion, we have

d2�xi

dt2
= ��ij

@2�

@xj@xk
(4)

Thus things that are separated by �~x accelerate together at a rate that is
proportional to their separation and to the mixed second partial derivatives of the
gravitational potential.

Consider one of Newton's spherical masses for an example.

� = �
GM

r
d2xi

dt2
= �

@�

@xi
=

GM

r2
n̂i

d2�xi

dt2
= ��ij

@2�

@xj@xk
= � (�ij � 3ninj)

GM

r3
(5)

1.3 Geodesic Equation

d2x�

d� 2
= �����

dx�

d�

dx�

d�
= �

1

2
g�� [g��;� + g��;� � g��;�]

dx�

d�

dx�

d�
(6)
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Table 1: Gravitational Field Strengths for Astrophysical Objects

At Surface of Object �=c2

proton � 10�39

Earth � 10�9

Sun � 10�6

White Dwarf � 10�4

Consider the case of very 3-D low velocity, near the instanteous rest frame where
~U = (1; �x; �y; �z)c ' (v0; 0; 0; 0) � (1; 0; 0; 0)c

du�

d�
= �����u

�u� ' ���00(v
0)2 (7)

The �rst part of the equation shows that the geodesic equation is equivalent to the

parallel transport of the 4-D velocity vector ~u.

1.4 Geometric Interpretation

Now we have come to understand inertia in curved space-time
Now we continue the Newtonian approximation by considering a static

gravitational �eld in static coordinate system.

���� =
1

2
g��(g�0;0 + g0�;0 � g00;�) =

1

2
g��g00;� ' �

1

2
g00;� (8)

The standard Newtonian equation of motion for a potential is

am =
d2xm

dt2
=

dvm

dt
= �

@�

@xm
(9)

A consistent solution is

g00;m = 2
@�

@xm
= (2�);m (10)

g00 = 1 + 2�=c2 (11)

Note that for a point source or spherically distributed mass, M , within radius
R<r �(r) = �GM=r

g00 = 1�
2GM

c2r
(12)
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1.5 Weak Field Gravity

We are now in a position to understand gravity in the weak �eld limit through the

Equivalence Principle and the idea that gravity is replaced by curved space-time.
We can derive the weak �eld approximation determine its paramaterization from the
Newtonian limit. We make use of the observation that Newton's law of gravity holds
for situations in which the non-relativistic approximation is justi�ed and thus valid.
These are situations in which the space-time region is su�ciently small that it can be
approximated by a coordinate system that is nearly at.

We write the weak �eld approximation as

g�� (~x) = ��� + h�� (13)

where ��� is the Minkowski metric (or later in the course this will be expanded to
the Robertson-Walker metric which reduces to the Minkowski metric in the small
space-time limit) and h�� << 1 is a small perturbation to the metric.

Using the formula for determining the Christo�el symbol from metric tensor

one has

���� =
1

2
(g��;� + g��;� � g��;�) '

1

2
(h��;� + h��;� � h��;�) (14)

g�� ' ��� � h�� + h��h
�� + : : : (15)

and thus
���� = ������� +Order(h2) (16)

The curvature tensor is

R�
�� = ����; � ���;� +Order(h2) (17)

The Ricci tensor is

R�� ' ����;� � ����;� +Order(h2) =
1

2
(�h��;00 + :::) (18)

The Ricci scalar curvature is

R = h��;00 + hij;ji +Order(h2) (19)

A slowly moving particle has

dx�

d�
� (1; 0; 0; 0) (20)

so that the geodesic equation is

d2xi(� )

d� 2
= ��i00 (21)
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In a stationary (no time dependence) system the time derivatives are zero and
therefore

� �i00 =
1

2
h00;i (22)

so that �1

2
h00 can be the gravitational potential.

Energy momentum conservation requires that the covariant derivative of the
stress-energy tensor be zero:

D�T�� = 0: (23)

��i00 = �
@V (x)

@xi
=

1

2

@h00

@xi

�
@�i

00

@xi
= 4�GNT00

@2h00

@(ct)2
= 8�GNT00 (24)

Now this must be expressed in a way that is invariant under general coordinat
transformations in order to deterimine the appropriate theory of gravity. Instead
of using only one component of the stress-energy tensor T�� and certain partial
derivatives of he connection �elds �, we need a relation between covariant tensors.

We reason from

R00 = �
1

2

@2h00

@(ct)2
; (25)

R =
@2hij

@xi@xj
+ ~@2(h00 � hii): (26)

These equations give us a lead on the relationship between the tensors T�� and
R�� . The most general tensor relation of this thype would be

R�� = AT�� +Bg��T
�
� (27)

where A and B are constants that have to be determined by comparing to the
Newtonian limit. The trace of the energy-momentum (stress-energy) tensor is, in
the non-relativisitic approximation

T �
� = �T00 + Tii: (28)

so that the 00 component can be written as

R00 = �
1

2
~@2h00 = (A+B)T00 �BTii (29)

In the newtonian limit the Tii term (the pressure p) vanishes, not only because the
pressure of the ordinary (non-relativistic) matter is very small but also because it
averages out to zero as a source. In the stationary case

0 = @�T�i = @jTji (30)
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d

dx1

Z
T11dx

2dx3 = �

Z
dx2dx3(@2T21 + @3T31) = 0; (31)

and therefore, if our source is surrounded by a vacuum

Z
T11dx

2dx3 = 0!

Z
d3~x T11 = 0; (32)

and similarly Z
d3~x T22 =

Z
d3~x T33 = 0: (33)

This in turn implies
A+B = �4�GN : (34)

There is an additional piece of information in that the trace of R�� is
R = (A + 4B)T �

� . Just at the general form of the second rank tensor for the stress
energy included a trace component we msut make use of the Einstein curvature tensor
G�� = R�� �

1

2
Rg�� to get

G�� = AT�� �

�
1

2
A+B

�
T �
� g�� (35)

Then

D�G�� = 0; D�T�� = 0; therefore

�
1

2
A+B

�
@�T

�
� = 0: (36)

For this to hold in general

B = �
1

2
A; A = �8�GN ; (37)

The only tensor equation consistent with Newton's equation in a locally at
coordinate frame is

R�� �
1

2
Rg�� = �8�GNT�� (38)

This is Einstein's General Theory of Relatitivity = gravitation.
Since both the left and right sides of the equation are symmetric under

interchange of indices means that there are 10 equations. However, the conservation
laws

D�G�� = 0; D�T�� = 0 (39)

give four equations that are automatically satis�ed. This means that there
are actually 6 non-trivial second-order non-linear partial di�erential equations.
Ultimately one must determine the metric tensor g�� which has 10 independent
components.

8�GNT
�
� = R;

R�� = �8�GN

�
T�� �

1

2
T �
� g��

�
: (40)
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therefore in regions of space-time where no matter is present one has

R�� = 0 (41)

but the complete Riemann tensor R�
�� will not necessarily vanish.

The Weyl tensor is de�ned by subtracting from R��� in such a way that
contraction on any pair of indices gives zero.

C��� = R��� +
1

2

�
g�R�� �

1

3
Rg��g� � terms with  and � exchanged

�
(42)

This construction is such that C��� has the same symmetry properties and

C
�
�� = 0: (43)

If one counts the number of independent components at a given point ~x that R���

has 20 degrees of freedom and R�� and C��� each have 10.
Though these eqations have been derived in a way that provided a unique

match to Newtonian limit, if we allow a small deviation from Newton's laws, then
another term is allowed. We have another conservation law (zero covariant derivative)
for the metric tensor

D�g�� = 0; (44)

Thus it is possible to modify General Relativity equation for gravity to

R�� �
1

2
Rg�� + �g�� = �8�GNT�� (45)

where � is the cosmological constant. This new term represents a renormalization

�T�� / g�� (46)
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1.6 Isometries

Tensor calculus is largely concerned with how quantities change under coordinate

transformations. It is of particular interest when a quantity does not change,
i.e. remains invariant, under coordinate transformations. For example, coordinate
which leave a metric invariant are of importance since they contain information
about the symmetries of the underlying Riemannian manifold. Just as in an
ordinary Euclidean space, there are two sorts of transformations: discrete ones,
like reections, and continuous ones, like translations and rotations. In most
applications, these latter types are the more important ones and they can in principle
be obtained systematically by obtaining the so-called Killing vectors of the metric.

A metric gab is from-invariant or simply invariant under the transformation

xa ! (x0)a, if
g0ab(~y) = gab(~y) for all coordinatesyc; (47)

that is, the transformed metric g0asb(~x
0) is the same function of its argument ~x0 as

the original metric gab(~x) is of its argument ~x. Then a transformation leaving gab
form-invariant is called an isometry. Since gab is a covariant tensor, it transforms
according to the equation above, or equivalently (interchanging primes and unprimes)

gab(x) =
@x0c

@xa
@x0d

@xb
g0cd(x

0): (48)

Then, using the equation from above, xa ! x0a will be an isometry, if

gab(x) =
@x0c

@xa
@x0d

@xb
gcd(x

0): (49)

Consider all quantities appearing in this equation to be functions of x using x0a =
x0a(x). In general, this condition is very complicated, but it may be greatly simpli�ed,
if we consider the special case of an in�nitesimal coordinate transformation

xa ! x0a = xa + �Xa(x) (50)

where � is small and arbitrary and Xa is a vector �eld. Di�erentiating gives

@x0a

@xb
= �ab + �@bX

a (51)

Now substituting into the transformation equation and applying Taylor's theorem

gab(x) = (�ca + �@aX
c)(�db + �@bX

d)gcd(x
e + �Xe)

= (�ca + �@aX
c)(�db + �@bX

d)[gcd(x) + �Xe@egcd(x) + :::]
= gab(x) + �[gad@dX

d + gbd@aX
d +Xe@egab] +O(�2): (52)

Working to �rst order in � and subtracting gab(x) from each side, it follows that the
quantity in the square brackets must vanish. This quantity is simply the Lie derivative
of gab with respect to X, namely,

LXgab = Xc@egab + gad@bX
d + gbd@aX

d (53)
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Now we can replace ordinary derivative and so, the condition for an in�nitesimal
isometry becomes

LXgab = Xc
reXa +raXb = 0: (54)

These equations are called Killing's equations and any solution of them is called a

Killing vector �eld Xa. The metric is dragged into itself' by the vector �eld Xa.
Theorem: An in�nitesimal isometry is generated by a Killing vector

Xa(x) satisfying LXgab = 0:
It is su�cient to restrict attention to in�nitesimal transformations because

it is possible to build up any �nite transformation with non-zero jacobian (i.e. a
continuous transformation) by an integration process involving an in�nite sequence
of in�nitesimal transformations.

2 The Schwarzschild Solution from Symmetry

2.1 Stationary Solutions

A metric will be stationary, if there exists a special coordinate system in which the
metric is visibly time-independent, i.e.

gab

@x0
�= 0; (55)

where x0 is a timelike coordinate. In an arbitrary coordinate system the metric will

probably depend explicitly on all the coordinates; so we need to make the statement
coordinate independent. De�ne a vector �eld

Xa
� �a0 (56)

in the special coordinate system, then,

LXgab = Xcgab;c + gacX
c
;b + gbcX

c
;a � �c0gab;c = gab;0 = 0 (57)

LXgab is a tensor, or if it vanishes in one coordinate system, it vanishes in all

coordinate systems. Hence, Xa is a Killing vector �eld. Conversely, a given
timelike Killing vector �eld Xa, then there always exists a coordinate system which
is adapted to the Killing vector �eld,, that in which the last equation holds, and
then

0 = LXgab � gab;0; (58)

and so the metric is stationary. This is a coordinate-independent de�nition.
A space-time is said to be stationary, if and only if, it admits a time

like Killing vector �eld.
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2.2 Hypersurface-orthogonal vector �elds

To discuss static solutions in a coordinate-independent way, we need to introduce

the concept of a hypersurface-orthogonal vector �eld. The equation of a family of
hypersurfaces is given by

f(xa) = � (59)

where di�erent members of the family correspond to di�erent values of �. Consider
two neighboring points with coordinates xa and (xa+ dxa), respectively, lying in one
of the hypersurfaces, S.

� = f(xa + dxa) = f(xa) +
@f

@xa
dxa (60)

to �rst order. Thus

0 =
@f

@xa
dxa (61)

evaluated at xa. De�ne the covariant vector �eld na to the family of hypersurfaces
by

na �
@f

@xa
dxa (62)

then becomes
nadx

a = gabn
adxb = 0

which tells us that na is orthogonal to the in�nitesimal contravariant vector �eld

dxa. Since dxa lies in S by construction, it follows that na is orthogonal to S and is
therefore known as the normal vector �eld to S at xa. Any other vector �eld Xa

is said to be hypersurface-orthogonal, if it is everywhere orthogonal to the family
of hypersurfaces, in which case it must be proportional to na everywhere, i.e.

Xa = �(x)na

for some proportionality factor �, which in general will vary from point to point.

3 Gravitational Lensing

The gravitational attraction of mass (stress-energy) deects light. Because of this
there can be multiple pathways for light to come from its source to an observer. It is
possible for an intervening mass to produce multiple images of a distant source. When
a mass concentration produces multiple images that is called strong gravitational

lensing. When a mass (energy) concentration produces an image of a source that is
distorted (magni�ed and sheared) that is generally called weak gravitational lensing.
Gravitational lensing image can give information about the source, about the object
acting as lens, and about the intervening large-scale geometry of the universe when
source, lens, and observer are at cosmological distances from one another.
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Realistic gravitational lenses may be clusters of distant galaxies withot any
special symmetries. Light may propagate through them as well as around them.
However, we �rst consider simple lensing by an concentrated spherical mass to
illustrate the main features of lensing.

3.1 Lens Geometry and Image Position

The deection angle � for a light ray passing by a mass M at an impact parameter
b >> Rs = 2GM=c2 is

� =
4GM

c2b
=

2Rs

b
: (63)

Proof of this is shown in lecture and is a homework problem.
For example and illustration, consider lensing by a stellar object, a galaxy, or

a galactic cluster.

Object: Planet Star Galaxy Cluster

Mass 0:01M� M� 1011M� 1013M�

Rs 0.03 km 2.95 km 0.03 lyr (1011 km) 3.12 lyr

Distance 10 kpc 109 lyr 7:2� 1013

3� 104 lyr � 1017 km 3� 1022 km

�E � 10�300 2:6 � 10�6 0.500 500

Table 2: Sample Parameters for Astrophysical Lenses

The following diagram explains the various quantities used in the the lensing
formulae.

� �
((
((
((
((
((
((
((
((
((
((
(

DS

� -

DLDLS -� �-

�
-

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`̀

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
((

Apparent Source

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`

`
`

`
`

`
`

`
`

`
`

`
`

`̀�
��

Lens

�
�
�


Source

~
u

Observer

This �gure shows the basic geometry of an astrophysical gravitational lens in
the thin lens approximation. The Source is located a distance DS from the observer

and distance DLS from the lens. Thus the distance from the lens to the source is
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DL. The heavy line from source to observer shows the approximate path of light
bundle. The light bundle is bent through an angle � shown schematically (thin lens
approximation) as a sharp bend at the distance of the lens. The apparent location
extrapolating the incoming light bundle backwards appears at angle � relative to line

of sight to the lens. Not shown (I could not seem to draw it) is a straight line between
the source and observer which is at an angle � to the line of sight to the lens.

The actual characteristic distance over which the bulk of the light bending
occurs is of order of the Schwarzschild radius RS which is typically much less than
the other distances. Thus the then lens approximation will be fairly accurate. It is
an excellent approximation that the light rays propagate as straight lines in at space
when far from the lens, and all the deection occurs at the lens.

In realistic simulations, all the angles involved are very small, so that one can
�nd transverse distances as angles times longitudional distance:

b ' DL� ' DL� +DLS(�+ � � �) �DS = �DS + �DLS (64)

This can be rewritten as

� = � +
�2E
�

�2E � 2RS

�
DLS

DSDL

�
(65)

�E is called the Einstein angle.
The solutions to these equations gives the angular locations of two images

�� =
1

2

�
� �

�
�2 + 4�2

E

�1=2�
: (66)

The arrangement of these two images as produced by a spherical mass is shown in
the accompanying �gure. There are two images on opposite sides of the position of
the lens. One is at a position greater than the Einstein angle and one closer than the

Einstein angle. If the source and lens are directly aligned with the observer (� = 0),
then the images make a complete ring at the Einstein angle. In the limit of a small
but �nite-sized spherical lens, there is a third image behind the lens in addition to
the two solutions.

The image locations are independent of the frequency of the light by the
Equivalence Principle.

By measuring the angles �� between the position of the lens and the position
of the images, the Einstein angle �E can be determined. If the distance to the lens is
estimated, then the mas of the lens is determined.

Many sources have �nite size and a de�ned shape. Because gravitational
lensing is not true lensing but the power of the bending declines with impact
parameter, the images not only are magni�ed but also sheared. The symmetry about
the observer-lens axis implies that the light ray's value of azimuth, � about that axis
is unchanged by the deection of the lens. the azimuthal angular width of the image
�� is thus preserved. The polar width �� is changed by an amount that can be
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determined by di�erentiating the formula for �� to �nd

��� =
1

2

 
1 �

�

(�2 + 4�2E)
1=2

!
�� (67)

Thus the images of something like a galaxy will be elongated and distorted. The
change in total brightness is called the magni�cation and is directly related to how
much the image area as surface brightness is conserved.

I�

I�
=

�
�

�
�

=

�����������������

�����
=

�����
 
��

�

! 
d��

d�

!����� = 1

4

 
�

(�2 + 4�2E)
1=2

+
(�2 + 4�2E)

1=2

�
� 2

!

Itotal

I�
=

I+ + I�

I�
=

1

2

 
�

(�2 + 4�2E)
1=2

+
(�2 + 4�2E)

1=2

�

!
(68)

The total intensity is always greater than unity. The gravitational lens always
enhances total brightness for small angles to the lens. If the source is close to the

observer-lens axis so that � is fairly small, this enhancement can be large. There are
microlensing events that show a factor of ten increasse of star light. There are cases
of distant galaxies being enhanced by signi�cant amounts.
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